
Ontology-based Geospatial Data Query and Integration

Tian Zhao1, Chuanrong Zhang2, Mingzhen Wei3, Zhong-Ren Peng4

(1) University of Wisconsin – Milwaukee, WI
(3) U.S. Geological Survey, Rolla, MO, 65401

(2) University of Connecticut, CT (4) University of Florida, FL

Abstract. Geospatial data sharing is an increasingly important subject as large
amount of data is produced by variety of sources, stored in incompatible formats,
and accessible through different GIS applications. Past efforts to enable sharing
have produced standardized data format such as GML and data access proto-
cols such as Web Feature Service (WFS). While these standards help enabling
client applications to gain access to heterogeneous data stored in different for-
mats from diverse sources, the usability of the access is limited due to the lack
of data semantics encoded in the WFS feature types. Past research has used on-
tology languages to describe the semantics of geospatial data but ontology-based
queries cannot be applied directly to legacy data stored in databases or shape-
files, or to feature data in WFS services. This paper presents a method to enable
ontology query on spatial data available from WFS services and on data stored
in databases. We do not create ontology instances explicitly and thus avoid the
problems of data replication. Instead, user queries are rewritten to WFS getFea-
ture requests and SQL queries to database. The method also has the benefits of
being able to utilize existing tools of databases, WFS, and GML while enabling
query based on ontology semantics.

1 Introduction

The National Spatial Data Infrastructure promotes geospatial data sharing to improve
data quality, to reduce costs, and to make data more usable to the public [17]. How-
ever, much of the existing geospatial data is stored in proprietary formats such as ESRI
shapefiles, coverage, and geodatabases, and it is only accessible through vendor-specific
geospatial information systems such as ESRI ArcGIS and Intergraph GeoMedia [29,
36]. Data sharing is difficult in this context because different GIS software has incom-
patible system designs, data models, and database storage structures [9, 28, 34, 35].

To enable sharing of geospatial data, the Open Geospatial Consortium (OGC) has
established a series of specifications such as Geographic Markup Language (GML) [11]
and Filter encoding, and data exchange protocols such as Web Feature Service (WFS) [13]
and Web Map Service (WMS) [12]. These specifications and protocols have provided
constructs for describing and accessing geospatial data at the domain level. For exam-
ple, GML files can encode the geometries of an object as points, lines, or polygons. The
WFS server can accept query of features within a bounding box and return the query
results in GML format. The resulting GML data can be rendered for visualization based
on the geometry encoding. Also, WFS servers accept more complex queries using OGC
filter encodings with relational or spatial operators [13]. Although the fast development
of these standards and web service technologies has undoubtedly improved the shar-
ing and synchronization of geospatial information across diverse resources, they only



can support technical data interoperability and cannot resolve semantic heterogeneity
problems in spatial data sharing. WFS and WMS protocols, and GML and OGC filters
have no provisions for data sharing at semantics level for applications. For example,
a WFS server may name a feature representing a bus route as “Route” or “ROUTE”.
A getFeature query to the WFS server has to spell the name correctly, otherwise no
results will return. Similarly, the geometry of the feature can be either a complete route
or just a link segment of the route. WFS service client has to know this information
in order to formulate getFeature requests to retrieve a route by its name. Moreover, a
route may have implicit relations with other features such as bus stop but such relation
is not specified as a feature property. Even if relations such as bus stops of a route are
somehow included as feature properties, they has to be encoded using XML complex
types because of the one-to-many relations and users of WFS services may not be able
to interpret the meaning of these feature properties based on the XML types alone.

The root of the problem is that structured data such as XML and GML does not have
enough constructs to express data semantics. As a result, software developed based on
the OGC standards cannot be readily adapted to consider data semantics. Recent re-
search [18, 1, 15, 28, 36] has applied the concepts of semantic web to geospatial data
sharing. Semantic web [5] promotes the use of ontology languages such as Resource
Description Framework (RDF) and Web Ontology Language (OWL) to provide seman-
tics for data usually found in databases or other structured documents [19, 36]. One
important advantage of RDF and OWL ontology is that it is easier to define semantics
for data using ontology constructs such as classes and properties. In addition, com-
bined with ontology semantic constraints, the ontology can allow reasoners based on
Description Logic (DL) to infer further knowledge from partially specified data and
check for data consistencies [2]. Tools like Jena1 allow inference rules be used to sup-
port more powerful query of ontology data. For example, in transit system, a property
transitStop may be the same as the composition of the transitPointFeatureEvent and
stopEvent properties. This is not yet supported in OWL but one can encode this rule in
Jena using its general purpose rule engine. Finally, ontology definitions are extensible
so that geospatial applications can use existing domain ontologies as basis to create ap-
plication ontologies. Thus, by providing a semantic interpretation of the data, RDF and
OWL ontology allows software programs to automatically understand structures and
meanings of diverse information sources and conduct automatic knowledge inference
or reasoning from existing data and documents.

Recent research projects have applied ontology to modeling observations and mea-
surements [30], to enable spatial/temporal/thematic reasoning [1], and to assist the dis-
covery and access of geospatial web services [27]. However, ontology reasoners only
can apply to ontology instances such as RDF instances or OWL individuals, which cor-
respond to the database records and WFS feature instances. Transforming all legacy
geospatial data to ontology form is time consuming, error prone, and inefficient. Also
ontology tools such as Protégé2 cannot efficiently manipulate ontology instances in
large quantity due to memory consumption. Moreover, it is not cost-effective for on-
tology tools to include the functionalities provided by geodatabases and WFS ser-

1 http://jena.sourceforge.net/
2 http://protege.stanford.edu



vices such as transaction management and spatial query. Thus, to efficiently support
ontology-based reasoning on geospatial data, it is necessary to keep legacy data stored
in geodatabases and other data files while providing an ontology-enabled interface to
translate user requests into queries to legacy data stores. To this end, there are projects
focused on extracting ontology definitions from database schemas [3] and annotating
geospatial data with semantic annotations based on OWL and inference rules [23].
However, it is not clear how the extracted ontology information can help translate user
requests into queries to legacy data sources.

In this paper, we propose a new solution to spatial data interoperability at semantic
level through an interface based on RDF ontology. We use a real world transportation
application, a transit system, as an example for our solution. Comparing with other
existing approaches, the most important advantage of our solution is that it does not
need to replicate legacy data stored in relational databases, shapefiles, or GML data
accessible from WFS services. The interface is to provide an ontology layer for spatial
data accessible from WFS services and databases. Users of the interface can query
spatial data as if it is defined in terms of some domain and application ontologies. The
interface relies on WFS services as data sources for spatial data so that it can use the
spatial query functions of WFS servers and use existing WFS client library for feature
rendering. The interface can also use relational databases as sources for non-spatial data
since this can improve the performance of queries not involving geometries.

The rest of the paper is organized as follows. We discuss related works in Section 2.
In Section 3, we give an overview of the proposed interface. Section 4 presents a simple
RDF ontology used in our example. In Section 5, we describe the mapping and inference
rules that are used to connect ontology definitions with the feature data in databases and
WFS servers. Section 6 explains the supported RDF queries, the query semantics, our
query rewriting algorithm, and possible extension to handle RDF semantic constraints.
Implementation issues are discussed in Section 7.

2 Related work

RDF-based data integration The problem of data integration is to combine data of
different sources and provide users a unified view of the data [24]. A data integration
system often uses a global schema containing mappings from global definitions to lo-
cal schemas in each data sources. In this context, data query problem can be reduced
to the problem of answering queries using materialized views [21], where data sources
are described as precomputed views on the global schema. Our method is similar to
answering queries using views except that the global schema is defined using RDF on-
tology and because of this, the views are not just the mapping from data sources on
the global schema but also include inference rules to obtain object properties. Also,
we need to consider the semantic constraints of the RDF ontology such as subclass
and subproperty relations. In this aspect, our method is closely related to [8] that also
uses RDF ontology as a medium to provide integrated access to different relational
databases. Their approach is to define database schemas as views on RDF ontology
entirely including object properties and semantic constraints. One of their focus is to
consider databases as incomplete data sources such that missing information is toler-



ated while query rewriting may result in alternative answers to the same query based
on different data sources used. In comparison, our method is more restrictive in the
way that mappings may be defined from database tables or WFS features to RDF on-
tology. In particular, we require each database table and WFS feature to map to one
RDF class. Additional RDF classes and object properties are defined through inference
rules. This simplifies the query rewriting algorithm and still preserves the flexibility of
using RDF ontology to express complex relations of spatial and non-spatial objects.
Another related work is D2RQ [7], which is a tool suite that provides RDF interface to
relational databases. D2RQ allows users to define a mapping file with rules to establish
a RDF ontology that maps RDF classes and properties to database tables and columns.
Also, additional properties may be defined over existing RDF classes and properties in
a way similar to our inference rules. D2RQ only provides RDF interface for relational
databases. We use it to provide access to non-spatial data in databases while spatial data
queries are handled by WFS servers.

Geo-spatial ontology Difference in semantics used in different data sources is one of
the major problems in spatial data sharing and data interoperability [6, 16]. One pos-
sible approach to overcome the problem of semantic heterogeneity is by means of on-
tology [18, 31, 32]. Cruz et. al. [10] studied the problem of ontology-alignment in the
context of integrating geospatial data in databases. They developed a semi-automatic
method of generating mappings between ontologies of local databases and a global
one. The mappings can then be used for query rewriting. Baglioni et. al [3] proposed
a method on accessing spatial database through ontology layer by semi-automatically
building an application ontology from a geographical database and then enrich it with
domain ontology by finding correspondence between the classes and properties of the
two ontologies. The enriched ontology is said to be used in assisting query answering
though it is not clear how semantic queries are translated to spatial SQL to databases.
Also related is a project for semi-automatically adding semantic annotations to geospa-
tial data [23], which uses OWL to provide semantic annotation and uses Semantic Web
Rule Language (SWRL)3 to add additional properties between instances based on the
existing ontology. More general discussion on developing geospatial ontologies can be
found in the work of Arpinar et. al. [1], where geospatial semantics are considered for
three types of geospatial relations: topological relations, cardinal directions, and prox-
imity relations. Their system architecture would pull geospatial data from sources such
as National Map, NASA sources, UCGIS sources, and put it in a massive metadata
store, which is then used to populate the ontology-based knowledge base accessible to
users via spatial/temporal/thematic reasoners. When geospatial data is solely provided
through web services, an additional layer of ontology included in a Service Oriented
Architecture can be useful. Paul and Ghosh [27] argue that a domain ontology can be
used to provide shared vocabulary for the schemas of WFS servers. User queries to a
service broker, which maintains a list of services, can somehow be translated to specific
getFeature requests to different service providers – WFS servers. The SPIRIT spatial
search engine [22] has shown ontology to be useful in searching web documents with
spatial contents. User queries can include a subject, a place name, and a spatial rela-

3 http://www.w3.org/Submission/SWRL/



tion to the place name. Results are list of documents and their positions on a map. The
search engine uses geographical and domain ontologies to disambiguate and expand
user queries, to rank documents based on relevance, and to extract metadata from web
documents.

The overall assessment is that our approach may extend or complement the related
works. For example, some methods [3, 10] generate useful ontologies from geospatial
databases, which can be used as the application and/or domain ontologies for our inter-
face. We do not use OWL as in [23] but it may be possible to include OWL ontologies
with help of reasoning tools. Also, our method could be one step towards realizing the
goal of using reasoners to query data sources through ontology interface as proposed
in [1]. The differences are that we do not require data be migrated from sources to
knowledge base, thus avoiding the problems of data replication, and we do not support
thematic and spatial-temporal queries. Lastly, our method may be applied to both web
service discovery and retrieval [27]. In this setting, web services should be published
using the class and properties of a domain ontology and service brokers then translate
service-retrieval requests to WFS getFeature requests using predefined rules.

3 A RDF-based Spatial Data Interface

Geospatial data contains both spatial attributes such as geometry and non-spatial at-
tributes. The fact that spatial data is distributed among many sources and stored in
different formats makes it hard to query spatial data through a single interface. WFS
as a standardized protocol designed to alleviate this problem by providing uniform in-
terface to data stores in forms of databases, shapefiles, and GML files. Though there
are sophisticated WFS server implementations such as GeoServer4, software for imple-
menting WFS clients is less than ideal. The client software such as MapBuilder5 and
OpenLayers6 primarily supports map retrieval, feature rendering, and feature transac-
tions. While the existing WFS clients can locate WFS services and create map layers,
the utility of these clients is limited by the lack of data semantics in WFS features. Also,
though features may contain descriptive attributes, joint queries based on them are not
very efficient since the WFS protocol uses bulky GML tags to encode feature attributes
while WFS service is more suitable for spatial querying and transactions. Many iden-
tifying attributes of the spatial features can be efficiently stored and accessed through
traditional relational databases.

In this paper, we describe an ontology-based interface for querying spatial features.
We focus on three aspects:

1. Create an ontology to describe the problem domain of the data supported by the
interface.

2. Define mapping and inference rules to connect the ontology with the WFS feature
types and database schemas.

3. Rewrite ontology queries to getFeature requests to WFS services and SQL queries
to databases to obtain answers.

4 http://geoserver.org/display/GEOS/GeoServer+Home
5 http://communitymapbuilder.org/
6 http://www.openlayers.org/



<rdfs:Class rdf:ID="Feature"/>

<rdfs:Class rdf:ID="SpatialFeature">
<rdfs:subClassOf rdf:resource="#Feature"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Geometry"/>

<rdf:Property rdf:ID="hasID">
<rdfs:domain rdf:resource="#Feature"/>

</rdf:Property>

<rdf:Property rdf:ID="geometry">
<rdfs:domain rdf:resource="#SpatialFeature"/>
<rdfs:range rdf:resource="#Geometry"/>

</rdf:Property>

Fig. 1. Domain ontology in RDF schema

For simplicity, we assume that the spatial data in question is distributed among a
WFS service and a relational database. The WFS service stores the feature geometries
and IDs while the relational database stores the rest of the non-spatial attributes.

We define the ontology in terms of a RDF schema. In the schema, RDF classes cor-
respond to the feature types while RDF properties correspond to feature attributes and
relations between features. The instances of the RDF classes form a RDF graph and they
correspond to the spatial features but we are not going to create these RDF instances
explicitly. Instead, the ontology interface provides access to the features through query
rewriting. The mapping rules define the correspondence between the RDF properties
and the WFS feature attributes and database columns. Simply mapping rules are not
very useful other than unifying the access to the two data sources. We use additional
inference rules to define some RDF properties between RDF instances in terms of other
RDF properties created in the previous step.

4 RDF-based ontology

We begin with a simple domain ontology where Feature class contains all spatial
and non-spatial objects. All instances of this class have an ID field through the property
hasID. Spatial objects belong to the SpatialFeature class, which is a subclass of
Feature and has an additional geometry property.

We extend the domain ontology with an application ontology to describe a tran-
sit system with Route, Stop, Link, LinkSequence, Pattern, etc. The Stop
and Link are spatial classes with point and line geometry respectively. Other classes
describe non-spatial features but they are all closely related to the spatial features. For
example, each instance of Route class contains several instances of Link that make up
the route through the property route link. A Route instance can also point to sev-
eral instances of Stop that are on the route. A Stop instance can refer to stops within



Class Superclass

Route Feature

Pattern Feature

LinkSequence Feature

Stop SpatialFeature

Link SpatialFeature

Property Domain Range

name Route string
intersection Stop string
routeID Pattern integer
patternID LinkSequence integer
linkID LinkSequence integer
linkOrder LinkSequence integer

route link Route Link
route stop Route Stop
nearby stop Stop Stop

Fig. 2. Summary of application ontology for transit system

a certain radius via the property nearby stop. We can find the intersection of
a Stop instance as well.

Other classes and properties are not directly related to spatial objects but they are
used to infer the properties such as route link. For example, the spatial data for link
and stop originally stored as shapefiles may be accessible as Web Features through a
WFS server. However, they only contain IDs and their geometries. Thus, we cannot find
out the property route link directly by querying the WFS service, and we need other
classes and properties to infer route link. The non-spatial data such as Route, Stop
(some of its properties), LinkSequence, Pattern often is stored in tables of a relational
database and we can use its properties to infer route link. Specifically, we can use
the Pattern table to find the patterns in a route and then find the links contained in
these patterns through the LinkSequence table (which describes the links traversed in a
pattern sequentially).

5 RDF views of WFS features and database tables

The RDF ontology is an abstraction of the spatial and non-spatial data stored in WFS
servers and relation databases. In order to have an ontology-based interface to the data,
we need a way to map the RDF ontology to the schemas of WFS features and relational
tables. This mapping is defined as RDF views from the feature and database schemas to
the ontology. With RDF views, RDF queries can be rewritten to getFeature requests to
WFS servers and SQL queries to databases.

The RDF views are defined in two steps. The first step is to create mapping rules to
define each WFS feature and relational table as a view over the RDF ontology. In this
step, only datatype properties are used in the mapping rules. Datatype properties are
the properties with ranges of primitive types such as string or integer. The second step
is to define inference rules for some additional RDF properties in terms of the datatype
properties used in the previous step. The additional properties include the so-called
object properties whose ranges are RDF class types.



Fig. 3. Schematic mapping from database tables and WFS features to RDF ontology

5.1 Mapping Rules

Definition 1. A mapping rule from WFS feature or database table to RDF triples has
the form of p(X) : −R(X, Y ), where p is a predicate corresponding to a WFS feature
or a relational table, R is a set of RDF triples, X and Y are sets of variables.



Figure 3 illustrates the mapping from relational tables and WFS features to RDF
ontology. The mapping rules written in Datalog-like7 notations are summarized in Fig-
ure 4. A mapping rule m has two parts, the left of :- is called the rule head and can
be written as m.head and the right of :- is the rule body accessible via m.body. The
rule head is a predicate corresponding to a WFS feature or database table. For exam-
ple, wfs:link(?id, ?geom) refers to the link feature in a WFS server, where ?id
and ?geom are variables corresponding to the ID and Geometry properties respectively.
Note that any string started with ? is a variable. Similarly, db:Route(?id, ?name)
is a route table in a database where ?id and ?name are variables representing the ID
and name columns of the route.

The rule body is a set of RDF triples written in N38 notations, where each triple has
the form of subject predicate object, and subject and object can be vari-
ables that correspond to RDF instances or primitive values such as strings, and object
can also be RDF types or constants. The predicate corresponds to the RDF properties
such as hasID and geometry. For each database table and each WFS feature type,
we create a corresponding RDF class. The mapping rules map the database tables and
WFS feature types to the corresponding RDF classes. Consequently, the RDF triples in
a body of a rule always have the same subject. For example, the only subject in Rule
(M1) is ?stop while the subject in (M2) is ?link.

In our definition, a variable ?x appearing in the rule head corresponds to the value
of a WFS feature property or a database table cell, while a variable ?y only appearing in
the rule body but not in rule head corresponds to RDF instances. Since we don’t create
RDF instances explicitly, the variables such as ?y are never materialized.

5.2 Inference rules

The mapping rules connect WFS features and database tables to RDF ontology but only
the datatype properties of the ontology are used. RDF ontology is more flexible in that
it can define object properties to connect RDF instances. For example, we can define
route link property to specify the links contained in a route. This is useful because
a route does not have geometry of its own. If we want to display a route on a map
based on the route name, we cannot rely on the datatype properties of the Route class.
Instead, we can use route link property to find out the links in a route with certain
name and render the geometries of these links on a vector layer of a map.

To connect object properties such as route link to WFS features and database
tables, we use a set of inference rules to derive object properties based on the datatype
properties. An inference rule i also written in Datalog-like notations has two parts: the
head written as i.head and the body written as i.body. The head of the rule has the form
of a RDF triple while the body is a set of RDF triples plus some filters.

Definition 2. An inference rule has the form of r(X) : −R(Y , Z), F (Z), where r is
a RDF triple, R is a set of RDF triples, F is an optional set of filters, and X , Y , Z
are sets of variables. X is a subset of Y and they contain variables referring to RDF
instances. Z is a set of variables referring to datatype values or geometries.

7 http://www.ccs.neu.edu/home/ramsdell/tools/datalog/datalog.html
8 http://www.w3.org/2000/10/swap/Primer.html



(M1) wfs:stop(?geom, ?sid) :- ?stop rdf:type Stop,
?stop hasID ?sid,
?stop geometry ?geom.

(M2) wfs:link(?geom, ?lid) :- ?link rdf:type Link,
?link hasID ?lid,
?link geometry ?geom.

(M3) db:stop(?sid, ?intersect)
:- ?stop rdf:type Stop,

?stop hasID ?sid,
?stop intersection ?intersect.

(M4) db:route(?rid, ?name) :- ?route rdf:type Route,
?route hasID ?rid,
?route name ?name.

(M5) db:pattern(?pid, ?rid) :- ?pattern rdf:type Pattern,
?pattern hasID ?pid,
?pattern routeID ?rid.

(M6) db:linksequence(?pid, ?lid, ?linkOrder)
:- ?linkseq rdf:type LinkSequence,

?linkseq patternID ?pid,
?linkseq linkID ?lid,
?linkseq linkOrder ?linkOrder.

Fig. 4. Mapping rules from WFS features and relational tables to RDF ontology

(I1)
?route route_link ?link :-

?route rdf:type Route,
?route hasID ?rid,
?pattern rdf:type Pattern,
?pattern hasID ?pid,
?pattern routeID ?rid,
?linkseq rdf:type LinkSequence,
?linkseq hasID ?lid,
?linkseq patternID ?pid,
?link rdf:type Link
?link hasID ?lid.

(I2)

?stop nearby_stop ?other :-
?stop rdf:type Stop,
?other rdf:type Stop,
?stop geometry ?geom,
?other geometry ?g,
filter(

DWithin(?g, ?geom, 1)
).

Fig. 5. Inference rules where filter(DWithin(?g, ?geom, 1)) is a filter to specify that
?g is within a distance of 1 from ?geom.

Figure 5 shows two inference rules where Rule I1 says that Property route stop
relates a route to a link if the route ID matches the route ID of a pattern, the pattern’s ID
matches the pattern ID of a link-sequence, and the link-sequence’s link ID matches the
link’s ID. The inference rule for route stop can be defined similarly. Note that the
filter in Rule I2 is similar to the OGC filters and the rule says that a stop one has a nearby
stop two if stop two’s geometry is within a distance of 1 from stop one’s geometry. Here
we omit the unit of distance.

To simplify query rewriting algorithm, we require an object property to appear in
the head of at most one inference rule.



6 RDF queries

We use SPARQL9 – a query language for RDF data to write our spatial queries. The
SPARQL queries have to be rewritten to WFS getFeature requests and SQL queries.
The queried results can then be displayed or rendered on a map.

Definition 3. We consider SPARQL queries in the form of

select X where R(Y , Z), F (Z)

where R is a set of RDF triples, F is an optional set of filters, and X , Y , and Z are set
of variables. X is a subset of Z. Y is a set of variables corresponding to RDF instances
while Z is a set of variables corresponding to datatype values and geometries.

We restrict the set of variables that a SPARQL query selects to be datatype variables
or geometries. The reason is that we are mainly interested in the attributes of spatial or
non-spatial features, not the virtual RDF instances. We call the set of RDF triples in a
SPARQL query q its body and write it as q.body.

As an example, suppose we want to find the geometry of a route by the route name
“Summit”. The SPARQL query can be written as

(Q1) select ?geom where ?route rdf:type Route.
?route route_link ?link.
?link geometry ?geom.
?route name ?name.
filter(?name = "Summit").

Here we use the property route link to find the links of a route with name “Sum-
mit”. Another example is to find the intersection address of a bus stop based on the x, y
coordinates of the stop (-88, 43).

(Q2)
select ?intersect where ?stop rdf:type Stop.

?stop intersection ?intersect.
?stop geometry ?geom.
filter(DWithin(?geom, (-88,43), 0.1)).

To display the nearby stops of a given stop, we can use the query below:

(Q3) select ?g where ?stop rdf:type Stop.
?stop geometry ?geom.
filter(DWithin(?geom, (-88,43), 0.1)).
?stop nearby_stop ?other.
?other geometry ?g.

Note that a user interface can hard-wire some of the queries into the interface so
that users do not have to write them explicitly. The queries such as Q2 and Q3 are
inconvenient for users to write directly because the geometries of interests are difficult
to specify precisely. The interface, however, can rely on mouse click to select stops and
then query for the nearby stops or intersection addresses.

9 http://www.w3.org/TR/rdf-sparql-query/



WFS feature instances
wfs:stop(10, (-88,42)) wfs:link(22, ((-88,42), (-88,43)))
wfs:stop(11, (-88,43)) wfs:link(23, ((-88,43), (-87,43)))

database instances
db:route(25, "Summit") db:pattern(11, 25)
db:stop(10, "Main at Oakland") db:linksequence(11, 22, 1)
db:stop(11, "Main at Adams") db:linksequence(11, 23, 2)

target RDF instances
_stop10 rdf:type Stop;

hasID 10;
intersection "Main at Oakland";
geometry (-88,42).

_stop11 rdf:type Stop;
hasID 11;
intersection "Main at Adams";
geometry (-88,43)

_link22 rdf:type Link;
hasID 22;
geometry ((-88,42), (-88,43)).

_link23 rdf:type Link;
hasID 23;
geometry ((-88,43), (-87,43)).

_route25 rdf:type Route;
hasID 25;
name "Summit".

_pattern11 rdf:type Pattern;
hasID 11;
routeID 25.

_seq11_1 rdf:type LinkSequence;
linkID 22;
linkOrder 1;
patternID 11.

_seq11_2 rdf:type LinkSequence;
linkID 23;
linkOrder 1;
patternID 11.

Fig. 6. WFS/database instances and the corresponding RDF instances written in N3 notations.
For example, route25 is a node of Route type and it has ID 25 and name “Summit”.

6.1 Query semantics

Given a set of RDF views connecting a RDF ontology and a set of WFS and database
schemas, we can always convert a set of WFS and database instances – the source
instances, to a set of RDF instances – the target instances. The goal here is to allow
querying on the target instances without actually creating them.

Thus, the problem we want to solve is

to find the answers to a SPARQL query Q1 on the RDF ontology by rewrit-
ing the query to WFS/SQL queries Q2 so that the answer to Q2 on source
instances is the same as the answer to Q1 on target instances.

As an example, consider the WFS and database instances shown in Figure 6, where
wfs:stop(10, (-88,42)) represents a feature instance of bus stop that has ID
10 and point geometry (−88, 42). Similarly, the line geometry of wfs:link(22,
((-88,42),(-88,43))) is ((−88, 42), (−88, 43))). Also, a database instance writ-
ten as db:linksequence(11, 22, 1) is a link sequence with pattern ID 11, link
ID is 22, and link order 1.

We use the mapping rules to create target RDF instances shown in Figure 6. Ap-
plying the inference rule I1 and I2 to the sample data, we obtain additional properties
for the instances of Route and Stop class as shown in Figure 7. Figure 8 illustrates the



_route25 rdf:type Route;
hasID 25;
name "Summit";
route_link _link22;
route_link _link23;

_stop10 rdf:type Stop;
hasID 10;
intersection "Main at Oakland";
geometry (-88,42);
nearby_stop _stop11.

_stop11 rdf:type Stop;
hasID 11;
intersection "Main at Adams";
geometry (-88,43);
nearby_stop _stop10.

Fig. 7. RDF node with properties derived with inference rules.

Fig. 8. Route route25 includes the links link22, link23 and the stops stop10 and stop11.

relationship between the route nodes, link nodes, and stop nodes. If we directly apply
query Q1 to the target instances in Figure 6 and 7, then we can find that a route by
the name of “Summit” has two links link22 and link23, which have the line ge-
ometries of ((-88,42), (-88,43)) and ((-88,43), (-87,43)). We want
to rewrite Q1 to WFS requests and SQL queries so that the same answers are returned
from the WFS servers and databases.

6.2 Query Rewriting

The query rewriting algorithms have two parts. The first part shown in Figure 9 applies
inference rules to the body of a SPARQL query (target query) so that RDF triples with
object properties are replaced by RDF triples with datatype properties. An inference
rule i is applicable to a triple t if i.head matches t via a variable substitution s such that
s(i.head) = t.

Definition 4. A substitution s is a variable mapping from the set V to another set V ′

such that for each v ∈ V , s(v) ∈ V ′. s(t) is t with every variable in t replaced by t(v).

Note that an inference rule may define an object property in terms of not only
datatype properties but also other object properties. This problem can be solved by



1 input: target query q
2 a set of inference rules I
3

4 for each triple t in q.body
5 for each inference rule i in I
6 if there exists a substitution s such that s(i.head) = t
7 then replace t in q.body with s(i.body)
8 end for
9 end for

10

11 output: q’ where q’.body has only triples in RDF mapping

Fig. 9. Algorithm 1: apply inference rule to SPARQL query.

1 input: target query q
2 a set of mapping rules M
3 initialize: apply algorithm 1 to q to obtain q’
4 group triples in q’.body by subject name
5 resulting a set of triple groups L
6

7 for each triple group t in L
8 for each mapping rule m in M
9 if there exists a substitution s such that

10 s(m.body) contains all triples in t
11 then replace t in q’ with s(m.head)
12 end for
13 end for
14

15 output: q’ where q’.body contains database queries and/or
16 WFS getFeature requests

Fig. 10. Algorithm 2: query rewriting.

recursively applying the inference rules to the query body until no object property re-
mains. We do not to consider this case for simplicity

Also note that the inference step is similar to backward chaining technique of au-
tomatic deduction used in logic programming systems such as Prolog [33]. However,
we do not define recursive inference rules and the head of each inference rule is dis-
tinct. The restrictions ensure that Algorithm 1 always terminates and there is no need
for backtracking (to try alternative rules of the same head).

The second part shown in Figure 10 applies algorithm 1 to the target query, and then
rewrites the resulting query to WFS getFeature requests and SQL queries.

For example, we can apply inference rule I1 to the query Q1 to replace ?route
route link ?link. with the body of Rule I1. Below is the result with some re-
dundant triples removed.

(Q1’) select ?geom where ?route rdf:type Route.
?route hasID ?rid.
?route name ?name.



filter(?name = "Summit").
?pattern rdf:type Pattern,
?pattern hasID ?pid,
?pattern routeID ?rid,
?linkseq rdf:type LinkSequence,
?linkseq patternID ?pid,
?linkseq hasID ?lid,
?link rdf:type Link
?link hasID ?lid.
?link geometry ?geom.

Next, we apply mapping rules to replace the query body with WFS requests and
SQL queries. For Query Q1’, we apply the set of mapping rules M2, M4, M5, and M6.
After substitution, we get query Q1”.
(Q1’’) select ?geom where wfs:link(?geom, ?lid),

db:pattern(?pid, ?rid),
db:linksequence(?pid, ?lid, ?linkOrder),
db:route(?rid, ?name),
filter(?name = "Summit").

At this point, the query rewriting is complete where the body of Query Q1’’ has
a WFS getFeature request for the link feature and and a database SQL query for the
pattern, linksequence, and route tables.

The order of execution of this query may be significant, however, since it is not
efficient to send the WFS getFeature request without obtaining link IDs of the route
“Summit” first. There could be large number of link features and the resulting GML file
returned by the getFeature request can be slow to download and parse. This requires us
to execute the database query that corresponds to:

db:pattern(?pid, ?rid),
db:linksequence(?pid, ?lid, ?linkOrder),
db:route(?rid, ?name),
filter(?name = "Summit").

This fragment can be translated to SQL of the form
select distinct l.lid
from patterns p, linksequence l, route r
where p.pid = l.pid and

r.rid = p.rid and
r.name = "Summit";

The retrieved link IDs are used to send getFeature request to the WFS server for the
geometries of the feature link.

Similarly, Query Q2 can be rewritten as
(Q2’)
select ?intersect where db:stop(?sid, ?intersect),

wfs:stop(?sid, ?geom),
filter(DWithin(?geom, (-88,43), 0.1)).

In this case, it is more efficient to query WFS feature stop for the stop ID where the
geometry of the stop is with distance 0.1 of the point (-88,43). The retrieved stop ID is
used to query database for the address of the stop intersection.

Lastly, Query Q3 can be rewritten as



(Q3’) select ?g where wfs:stop(?id, ?geom),
filter(DWithin(?geom, (-88,43), 0.1)),
wfs:stop(?sid, ?g),
filter(DWithin(?g, ?geom, 1)).

In this case, two WFS requests are needed. The first request finds the geometry ?geom
of a stop around the point (-88,43) and the second request finds all the stops that are
within the distance of 1 from ?geom. The geometries of all requested stops are returned.

Note that the execution of WFS and database queries may be more efficient if at
least one variable of each WFS query is given values by the previous queries or such
variable is constrained by some OGC filters. This is somewhat related to query rewriting
in the context of data integration where data sources may have restrictions on possible
access path to data [20].

Also note that in general, query rewriting using views should consider whether the
rewritings are equivalent or maximally contained and whether the views are assumed
to be complete or not [20]. In our case, the views (database or WFS schemas) on RDF
schemas are complete and we seek equivalent rewriting. The views are relatively simple
since there can be at most one database view and one WFS view on each RDF class.
Because of these restrictions, each database table or WFS feature type has unique map-
ping in a RDF class. So if a RDF ontology R is created from a database and a WFS
based on the above mapping and inference rules, and Q′ is a rewriting of Q using Al-
gorithm 2, then Q′ should always produce the same result as executing Q on R. Also,
though the complexity for query rewriting when queries and views are expressed as
conjunctive queries is NP-complete [25], our algorithm is polynomial time because of
the restrictions on views.

6.3 Semantic constraints

RDF schema10 includes some constructs of semantic constraints to assist ontology
reasoning. The constructs include rdfs:subClassOf, rdfs:subPropertyOf,
rdfs:domain, and rdfs:range, etc. These restrictions can be useful in stating
queries. For example, a RDF query for the instances of SpatialFeature class that
are within a certain bounding box can be automatically translated to queries for in-
stances of Stop and Link since they are both subclasses of SpatialFeature.

In fact, the ontology defined in Figure 1 and 2 already contains some semantic
constraints. The class SpatialFeature is a subclass of Feature, while the for-
mer has the subclasses Link and Stop, and the latter has the subclasses Route,
Pattern, LinkSequence, etc. Also, we specified the domain and range of the prop-
erty route link to be Route and Link.

Because of these constraints some queries can be simplified. For example, Query
Q1 does not need to say that the type of ?route is Route because the domain of
route link already has that restriction.

simplified (Q1)

select ?geom where ?route route_link ?link.

10 http://www.w3.org/TR/rdf-schema/



?link geometry ?geom.
?route name ?name.
filter(?name = "Summit").

Nothing needs to be changed in the algorithm for this example because the inference
rule for route link will add triples to specify the types of ?route and ?link.

In general, however, we need to include more inference rules to incorporate the use
of semantic constraints. That is, we need to include inference rules to consider subclass
and subproperty relations and the domain and range restrictions. We need to modify
Algorithm 1 so that for each triple of the form ?s rdfs:type SpatialFeature,
we add additional triples ?s rdfs:type Stop and ?s rdfs:type Link since
Stop and Link are subclasses of SpatialFeature. Similar treatment should be
applied to Feature. Also, for any triple ?s p ?o, if the property p has domain and
range constraints, we should add type restrictions for ?s and ?o; if p has a subproperty
p’, then we should add another triple ?s p’ ?o. Algorithm 2 remains the same.

More semantic constraints can be found in another ontology language OWL11, an
extension of RDF. For example, classes and properties in OWL can be declared as
synonyms using owl:sameAs. Note that OWL-DL – a subset of OWL is based on
description logics. Query rewriting with views is more difficult when the views are
expressed in description logics and conjunctive queries over description logics. Query
rewriting may be possible with some restrictions on the views [4]. Also, when descrip-
tion logics are combined with inference rules, the problem may be undecidable. Some
restricted systems have decidable algorithms but they do not deal with query rewriting.
Examples include AL-Log [14], which is an integrated system for knowledge repre-
sentation based on description logics and Datalog, and Motik et.al. [26] proposed a
decidable combination of OWL-DL with function-free Horn rules.

7 Implementation issues

Though the query rewriting algorithm can translate SPARQL queries to WFS requests
and SQL queries, it is easier to do this using an existing application – D2R Server [7]
that can create virtual RDF graphs from one or more relational databases. With D2R
server, we no longer need to send SQL queries to databases directly. In fact, we can
modify the Algorithm 2 slightly to make it work with D2R Server. D2R Server ac-
cepts SPARQL queries and through a set of mapping rules similar to what we have
described, it translates the SPARQL queries to database queries and gets results back as
RDF triples. So we first rewrite some RDF triples in the body of initial query to WFS
getFeature requests. For example, Query Q1 can be rewritten to

select ?geom where ?route rdf:type Route.
?route route_link ?link.
?route name ?name.
filter(?name = "Summit").
?link hasID ?lid.
wfs:link(?lid, ?geom).

11 http://www.w3.org/TR/owl-features/



Since we are interested in the link IDs of the route “Summit”, we can send the following
SPARQL query to the D2R Server:
(Q4) select ?lid where ?route rdf:type Route.

?route route_link ?link.
?route name ?name.
filter(?name = "Summit").
?link hasID ?lid.

The above query retrieves link IDs from database and we assume that the D2R Server
has the same RDF ontology, which includes the RDF property route link.

<wfs:GetFeature service="WFS" version="1.0.0"
xmlns:wfs="http://www.opengis.net/wfs"
xmlns:ogc="http://www.opengis.net/ogc" ...
<wfs:Query typeName="wfs:link">
<ogc:Filter>

<OR>
<PropertyIsEqualTo>

<PropertyName>id</PropertyName>
<Literal>22</Literal>

</PropertyIsEqualTo>
...

</OR>
</ogc:Filter>

</wfs:Query>
</wfs:GetFeature>

Fig. 11. A WFS GetFeature request to retrieve instances of feature Link with ID filters

After obtaining the link IDs, a getFeature request similar to Figure 11 can be sent
to WFS server to retrieve the geometries of the links. Notice that Query Q4 has an
additional triple in its body ?link hasID ?lid to retrieve link IDs. This can be
generalized because the WFS features can be identified by their IDs. So in general, if
the initial query involves a WFS feature, we require both the WFS getFeature request
and the SPARQL query to D2R server to return IDs of the feature. If a WFS request is
sent first, then the resulting feature IDs are used in the filters of the SPARQL query to
D2R server. The architecture of the RDF interface is shown in Figure 12.

A sample demonstration of the interface12 is shown in Figure 13, which shows Wauke-
sha county’s route links and streets as a WFS and a WMS layer, and Figure 14, which
shows the links and bus stops of the route “Summit” retrieved from a WFS server using
the link IDs and stop IDs retrieved from a D2R server. Also, as shown in Figure 14,
users can click on a bus geometry (highlighted) and retrieve the intersection “SUMMIT
AVE at SYLVAN TER” associated with the stop.
12 http://jiangxi.cs.uwm.edu:8080/waukesha/gis.html



Fig. 12. RDF interface architecture

Fig. 13. Transit routes of Waukesha county

8 Conclusion and Future work

We have presented a new method to provide integrated access to distributed geospa-
tial data using RDF ontology and query rewriting. This method is more efficient than
converting all data to ontology instances because it avoids the costs and consistency
problems of data replication. Also, ontology interface can still use existing tools for con-
ducting spatial query on geometries and relational queries on non-spatial data, and for
rendering spatial features encoded in GML. Using the proposed method, user queries
can be more straightforward because the application ontology can encode data seman-
tics not available in WFS feature types or database schemas.

Our method uses RDF ontology but since RDF is a subset of OWL, the method can



Fig. 14. Route “Summit” and its stops

be directly applied to OWL ontology though extension may be needed to take advan-
tage of the semantic constraints of OWL. OWL has more semantic constructs such as
class equivalence/intersection/union, transitive/reflexive object properties, and the re-
strictions of universal/existential quantification on object properties. Our query rewrit-
ing algorithm needs to be extended to handle semantic constraints encoded with these
constructs. However, it may be possible to use some existing tools such as Jena in this
extension.

To evaluate the effectiveness of our method, we may need to implement a more
complete ontology interface where user can query any classes and properties defined in
domain and application ontology. The evaluation criteria may include the expressive-
ness of the interface – how many kinds of queries the interface can handle. The criteria
should also include the efficiency of the interface – how fast the results are returned
in comparison to the alternative ways of data integration such as data warehousing ap-
proach where all data are converted to ontology instances. Finally, we may want to
evaluate the flexibility of the method – how easy it is to combine this method with other
GIS applications. For example, we can provide this ontology interface as a web service
where other web-based applications can use it as a source of querying and rendering
geospatial data.

As future work, we plan to implement the query rewriting algorithms to accept
arbitrary SPARQL queries. Also, it may be useful to have ontology browser to display
instances of ontology classes, thus users can navigate to other instances following links
of object properties. The browser could be implemented on top of the query rewriting
module. However, it is not clear how the contents of the browser should be presented
since GML data of geometries is clearly not interesting while rendering all returned
spatial instances could be very inefficient.



9 Acknowledgments

We thank the anonymous reviewers for their valuable comments. This research was
partially supported by NSF award BCS-0616957.

References

1. I Budak Arpinar, Amit Sheth, Cartic Ramakrishnan, E Lynn Usery, Molly Azami, and Mei-
Po Kwan. Geospatial ontology development and semantic analytics. Transactions in GIS,
10(4):551–575, 2006.

2. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider. The Description Logic Handbook: Theory, Implementation and Application.
Cambridge University Press, New York, NY, USA, 2003.

3. Miriam Baglioni, Maria V. Masserotti, Chiara Renso, and Laura Spinsanti. Building geospa-
tial ontologies from geographical databases. In Proceedings of GeoSpatial Semantics, the
Second International Conference, pages 195–209, 2007.

4. Catriel Beeri, Alon Y. Levy, and Marie-Christine Rousset. Rewriting queries using views
in description logics. In PODS ’97: Proceedings of the sixteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 99–108, 1997.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, pages
34–43, 2001.

6. Y. Bishr. Overcoming the semantic and other barriers to GIS interoperability. International
Journal of Geographical Information Science, 12(4):299–314, 1998.

7. Christian Bizer and Andy Seaborne. D2RQ -treating Non-RDF databases as virtual RDF
graphs. In Proceedings of the 3rd International Semantic Web Conference (ISWC2004),
2004.

8. Huajun Chen, Zhaohui Wu, Heng Wang, and Yuxin Mao. RDF/RDFS-based relational
database integration. In Proceedings of the 22nd International Conference on Data Engi-
neering (ICDE’06), page 94, 2006.

9. J. Choichi. Constaint-based interoperability of spatiotemporal databases. Geoinformatica,
3(3):211–243, 1999.

10. I. F. Cruz, W. Sunna, and A. Chaudhry. Semi-automatic ontology alignment for geospatial
data integration. In Proceedings of the 3rd International Conference, GIScience, pages 51–
66, October 2004.

11. OGC document 02-023r4. Geography Markup Language (GML), version 3.00, 2003.
12. OGC document 04-024. Web Map Service, Version 1.3, 2004.
13. OGC document 04-094. Web Feature Service, Version 1.1.0, 2005.
14. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. AL-log:

Integrating datalog and description logics. Journal of Intelligent Information Systems,
10(3):227–252, 1998.

15. M. Egenhofer. Toward the Semantic Geospatial Web. In Tenth ACM International Sympo-
sium on Advances in Geographic Information Systems, pages 1–4, 2002.

16. S.I. Fabrikant and B.P. Buttenfield. Formalizing semantic spaces for information access.
Annals of the Association of American Geographers, 91, 2001.

17. FGDC. National Spatial Data Infrastructure, 2007.
18. F. Fonseca, M. Egenhofer, P. Agouris, and G. Camara. Using ontologies for integrated geo-

graphic information systems. Transactions in GIS, 6(3):231–257, 2002.
19. G. Hobona G, D. Fairbairn, and P. James. Semantically-assisted geospatial workflow de-

sign. In Proceedings of 15th ACM International Symposium on Advances in Geographic
Information Systems, pages 194–201, November 2007.

20. Alon Y. Halevy. Theory of answering queries using views. SIGMOD Record (ACM Special
Interest Group on Management of Data), 29(4):40–47, 2000.



21. Alon Y. Halevy. Answering queries using views: A survey. VLDB Journal: Very Large Data
Bases, 10(4):270–294, 2001.

22. C.B. Jones, A.I. Abdelmoty, D. Finch, G. Fu, and S. Vaid. The SPIRIT spatial search en-
gine: architecture, ontologies and spatial indexing. In Proceedings of the 3rd International
Conference, GIScience, pages 25–139, October 2004.

23. Eva Klien. A rule-Based strategy for the semantic annotation of geodata. Transactions in
GIS, 11(3):437C452, 2007.

24. Maurizio Lenzerini. Data integration: a theoretical perspective. In PODS ’02: Proceedings
of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 233–246, 2002.

25. Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering
queries using views. In Proceedings of the 14th ACM Symposium on Principles of Database
Systems, pages 95–104, 1995.

26. Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for owl-dl with rules. Journal
of Web Semantics: Science, Services and Agents on the World Wide Web, 3(1):41–60, JUL
2005.

27. Manoj Paul and S. K. Ghosh. An approach for service oriented discovery and retrieval of
spatial data. In Proceedings of the 2006 international workshop on Service-oriented software
engineering, pages 88–94, 2006.

28. Z.-R. Peng. A proposed framework for featurelevel geospatial data sharing: A case study
for transportation network data. International Journal of Geographic Information Sciences,
19(4):459–481, 2005.

29. Z.-R. Peng and C. Zhang. The roles of geography markup language, scalable vector graphics,
and web feature service specifications in the development of internet geographic information
systems. Journal of Geographical Systems, 6(2):95–116, 2004.

30. Florian Probst. Ontological analysis of observations and measurements. In Proceedings of
the 4th International Conference, GIScience, pages 304–320, 2006.

31. H. Pundt and Y. Bishr. Domain ontologies for data sharing - an example from environmental
monitoring using field GIS. Computers and Geosciences, 28(1):95–102, 2002.

32. B. Smith and D. Mark. Geographic categories: An ontological investigation. International
Journal of Geographic Information Science, 15(7):591–612, 1998.

33. Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, 1994.
34. C. Zhang and W. Li. The roles of Web Feature and Web Map Services in real time geospa-

tial data sharing for time-critical applications. Cartography and Geographic Information
Science, 32(4):269–283, 2005.

35. C. Zhang, W. Li, Z.-R. Peng, and M. Day. GML-based interoperable geographical database.
Cartography, 32(2):1–16, 2003.

36. C. Zhang, W. Li, and T. Zhao. Geospatial data sharing based on geospatial semantic web
technologies. Journal of Spatial Science, 52(2):35–49, 2007.


